Eukaryotic Gene Prediction

Wei Zhu May 2007

"In nature, nothing is perfect ..."

- Alice Walker

Gene Structure

What is Gene Prediction?

<u>Gene prediction</u> is the problem of parsing a sequence into nonoverlapping coding segments (CDSs) consisting of exons separated by introns.

Signal Sensors

A signal sensor evaluates fixed-length features in DNA. Start codons Stop codons Donor sites Acceptor sites Promoters Poly-A signals

Content Sensors

A *content sensor* evaluates variable-length features which extend from one signal to another:

- Exons
- Introns
- Intergenic regions
- UTRs

Gene Prediction Approaches

Intrinsic (*ab initio*)

 GENSCAN, FGENESH, GeneMark.hmm GlimmerM, Genie;

Extrinsic (similarity-based)

- Spliced alignment: GenomeScan, EuGene, FGENESH+, FGENESH_C, GeneId+, etc;
- Genomic comparison: TwinScan, TWAIN, SLAM, SGP, FGENESH_2, etc;

Integrated

 GeneScope, GeneMachine, JIGSAW, RiceGAAS, Ensembl, EVM etc.

ab initio Gene Prediction

 Adopt a rigorous probabilistic model of sequence structure and choose the most probable parse according to that probabilistic model.

Pros

- Fast and efficient
- Remarkable accuracy at the nucleotide level
- Cons
 - Less than 50% accuracy at the gene level

Development of a Gene Finder

Build the model
Train the model to generate the related parameters
Predict/Evaluate

Imperfect Model

GT.....AGA G T....

1-bp intron

Accuracy Evaluation

Nucleotide level
Exon level
Gene level

Nucleotide/Base Level

Prediction accuracy per base coding/non-coding

Exon Level

 Prediction accuracy with respect to exact prediction of exon start and end points

An **exon** is assumed to be **correctly predicted** if the overlap between actual and predicted exon is greater or equal than a given threshold α .

$Sn = \frac{\text{number of Correct Exons}}{\text{number of Actual Exons}}$	Sensitivity
$Sn = \frac{\text{number of Correct Exons}}{\text{number of Predicted Exons}}$	Specificity
$ME = \frac{\text{number of Missing Exons}}{\text{number of Actual Exons}}$	(Sensitivity)
$WE = \frac{\text{number of Wrong Exons}}{\text{number of Predicted Exons}}$	(Specificity)

Gene/Protein Level

Prediction accuracy with respect to the protein product encoded by the predicted gene

A Simple Calculation

Given *x* accuracy at exon level, the accuracy of the prediction at the gene level is:

P = P (all exons correctly predicted) $=x^n$, where *n* is the number of exons in the gene.

Typically, *x*<90% and *n*=5, then *P* = 0.9x0.9x0.9x0.9x0.9 = 59%

Performance

Species-specific setting ■ GC content Gene density Gene/Exon/Intron length distribution Codon usage Benchmark training data set • test data set

Maize Gene Prediction

Plant Molecular Biology (2005) 57:445–460 DOI: 10.1007/s11103-005-0271-1 © Springer 2005

Evaluation of five *ab initio* gene prediction programs for the discovery of maize genes

Hong Yao^{1,4}, Ling Guo^{1,6,†}, Yan Fu^{1,4,†}, Lisa A. Borsuk^{1,6}, Tsui-Jung Wen², David S. Skibbe^{1,5}, Xiangqin Cui^{1,4,9}, Brian E. Scheffler⁸, Jun Cao^{1,4}, Scott J. Emrich⁶, Daniel A. Ashlock^{3,6} and Patrick S. Schnable^{1,2,4–7,*}

¹Department of Genetics, Development, and Cell Biology (*author for correspondence; e-mail schnable@ iastate.edu); ²Department of Agronomy; ³Department of Mathematics; ⁴Inderdepartmental Graduate Programs in Genetics; ⁵Department of Molecular, Cellular and Developmental Biology; ⁶Department of Electrical and Computer Engineering and Department of Bioinformatics and Computational Biology; ⁷Center for Plant Genomics, Iowa State University, Ames, Iowa 50011-3650; ⁸USDA-ARS, Mid South Area Genomics Facility, Stoneville, MS 38776-0038, USA; ⁹Present address: Department of Biostatistics, Birmingham, AL 35294, USA; [†]these authors contributed equally to this work

Received 16 August 2004, accepted in revised form 6 January 2005

Gene Finders

Programs	Websites	Trained organisms	Type of pro	Type of prediction		Algorithm models
		- J	Splice site	Exon	Gene model	
FGENESH	http://www.softberry.com/ berry.phtml?topic = fgenesh&group = programs&subgroup = gfind	Monocots	Yes	Yes	Yes	GHMM ^a
GeneMark.hmm	http://opal.biology.gatech.edu/ GeneMark/eukhmm.cgi?org=H.sapiens	Maize	Yes	Yes	Yes	GHMM
GENSCAN	http://genes.mit.edu/GENSCAN.html	Maize	Yes	Yes	Yes	GHMM
GlimmerR	http://www.tigr.org/tdb/glimmerm/ glmr_form.html	Rice	Yes	Yes	Yes	IMM ^b
Grail	http://compbio.ornl.gov/Grail-1.3/	Arabidopsis	Yes	Yes	No	neural networks

^aGHMM, Generalized Hidden Markov Model. ^bIMM, Interpolated Markov Model.

Accuracy

Programs	Nucleo	tide level		Exon level							
	SN	SP	CC	SN	SP	(SN + SP)/2	PE%	OE%	ME%	WE%	
FGENESH	0.97	0.94	0.93	0.86	0.88	0.87	9.4	0	4.6	3.1	
GeneMark.hmm	0.92	0.93	0.89	0.69	0.80	0.75	14	0	19	5.4	
GENSCAN	0.81	0.95	0.82	0.54	0.81	0.68	12	0	39	7.0	
GlimmerR	0.70	0.91	0.71	0.51	0.64	0.57	23	5.8	23	7.7	
Grail	0.55	0.67	0.43	0.34	0.28	0.31	33	7.7	17	31	

Challenges of Intrinsic Approaches

- Alternative splicing
- Nested/overlapped genes
- Extremely long/short genes
- Extremely long introns
- Extremely short exons
- Non-canonical introns
- Frame-shift errors
- Split start codons (that is, the start codon is split by an intron in the genomic sequence)
- UTR introns
- Non-ATG triplet as the start codon
- Polycistronic genes

Gene Prediction Approaches

Intrinsic (*ab initio*)

 GENSCAN, FGENESH, GeneMark.hmm GlimmerM, Genie;

Extrinsic (similarity-based)

- Spliced alignment: GenomeScan, EuGene, FGENESH+, FGENESH_C, GeneId+, etc;
- Genomic comparison: TwinScan, TWAIN, SLAM, SGP, FGENESH_2, etc;

Integrated

 GeneScope, GeneMachine, JIGSAW, RiceGAAS, Ensembl, etc.

Similarity-based Gene Prediction

EST/cDNA spliced alignment
Protein spliced alignment
Genomic comparison

Intra-genomic
Inter-genomic

EST/cDNA Spliced Alignment

Report for cDNA subcluster: 1258

of cluster: 20541 (annotdb_asmbl_id:10197 coords:116784-120621)

Subcluster view.

(+)10197.m00079 [current(v1)]: fgenesh model (+)asmbl_1573-including gene model (a+/s+) asmbl_1573 FL-containing (a+/s+) gi|32987826|dbj|AK102617.1| FL Oryz (a+/s+) gi|32971071|dbj|AK061053.1| FL Oryz (a+/s+) gi|32970061|dbj|AK060043.1| FL Oryz (a+/s+) gi|25996130|gb|CA766875.1|CA766875 (a+/s+) gi|29642352|gb|CB647359.1|CB647359 (a+/s+) gi|32948412|gb|BP184984.1|BP184984 (a+/s+) gi|2312713|gb|C28868.1|C28868 C2886 (a+/s+) gi|44670232|gb|CR283666.1|CR283666 (a+/s+) gi|32947813|gb|BP184385.1|BP184385 (a+/s+) gi|29642353|gb|CB647360.1|CB647360 (a+/s+) gi|25806693|gb|CA762648.1|CA762648 (a+/s+) gi|25806691|gb|CA762657.1|CA762657 (a+/s+) gi|25806694|gb|CA762649.1|CA762649 (a+/s+) gi|25806692|gb|CA762647.1|CA762647 (a+/s+) gi|27920725|gb|CB096533.1|CB096533 (a+/s+) gi|8857146|gb|AU094464.1|AU094464 A (a+/s+) gi|12622130|gb|AU172343.1|AU172343 (a+/s+) gi|27577026|gb|CA999720.1|CA999720 (a+/s?) gi|32947812|gb|BP184384.1|BP184384 (a-/s?) gi|24208723|gb|AU225750.1|AU225750 (a+/s?) gi|1632063|gb|C19792.1|C19792 C1979

Assembly description

L	sembly	cdnas	annotations linked	status	
		-1126221201-61ATT172242-11ATT172242			

Pros and Cons

Pros

- High accuracy
- Cons
 - Unavailability or incompleteness of transcript sequence data
 - Extra computation to generate alignments
 - Diverse sequence quality
 - Incomplete full-length cDNA
 - Contamination
 - Incorrect sequence orientations

Genomic Comparison

Microsynteny between *M. truncatula* and Arabidopsis Hongyan et al, 2003

Gene Structure of Syntenic and non-Syntenic Homologous Genes

Hongyan et al, 2003

Comparative Analysis of Cereal Gene Structures

Comparative Analysis of Cereal Gene Promoters

Adh1	DRE-
Zm - 401 3b - 392 0s - 273 Hv - 371	element G-bo) TCCGAGCTAGCGCAGGCGCATCCGACGGCACG t. 2c
Zm -201 3b -199 0s -109 Hv -172	AGGCGGCCAAACCGCACCCTCCTTC tggga .a.tgtc .c.tga 02-Site
Zm 763 3b 684 0s 588 Hv 335	GC G FTTGACTTGC GC CTT CTTGG CG GC TTAT
Zm 1088 3b 1012 0s 1176 Hv 792	A GTG GA CTTTGACA GA TTTAT
Zm 1637 3b 1581 0s 1881 Hv 1444	TTATCTTGAGATGCTGAGTTACA gt. g=gccg cc.g.c

Pros and Cons

Pros

- Aid to identify low expressed genes
- Identify genes in multiple species simultaneously
- Aid to identify transcription factor binding sites
- Uncover non-protein coding genes

Cons

- Performance will depend on the evolutionary distance between the compared sequences.
- Exon/intron boundaries may not be conserved

Tiling Array

ARTADE

-ARabidopsis Tiling-Array-based Detection of Exons

Filter by: keyword • C	Arabidopsis thaliana : 1
Bookmark Swap Loci Zoom In Zoom Out	8,848,876 bp 16,577 bp 8,865,453 b
Add/Config	🗷 show all 😔 🧉
gene(+) gene(-) Flower Tiling chip(+)	
Tiling chip(-)	
Tiling chip(+) Tiling chip(-)	er fighet og hang men og en størte det men som som handelse er som en størte er er som en som er som er som er
Tiling chip(+) Tiling chip(-)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Light7day	
Tiling chip(+) Tiling chip(-)	ulle hal alala han meigen seine seine na an

Gene Prediction Approaches

Intrinsic (*ab initio*)

 GENSCAN, FGENESH, GeneMark.hmm GlimmerM, Genie;

Extrinsic (similarity-based)

- Spliced alignment: GenomeScan, EuGene, FGENESH+, FGENESH_C, GeneId+, etc;
- Genomic comparison: TwinScan, TWAIN, SLAM, SGP, FGENESH_2, etc;

Integrated

 GeneScope, GeneMachine, JIGSAW (combiner), RiceGAAS, Ensembl, etc.

Gene Discovery via Multiple Gene Finders

Highest Scoring Path Thru Candidate Exons

THE REPORT OF A DECK OF A DECK 120 00 0 ALL MALADALE STREET, MILLER TT - DESCRIPTION T THE R MINE Real Property TABLE REALING MEMORY AND A DESCRIPTION OF A REAL PLACE REAL PROPERTY AND A DESCRIPTION OF A 1.18 IN A REAL PARTY AND A DESCRIPTION OF A D 10.00.00. THE CALL AND A DESCRIPTION OF A REPORT OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A 1.0.04 AND IN THE OWNER OF 188 . IN THE REPORT OF THE ACCOUNT OF THE THE REPORT OF BUILDING 11111 1 111 J. I. I.

TIGR Rice Genome Annotation Pipeline

RiceGAAC

Ensembl Gene Prediction Procedure

Summary

- Nothing is perfect
- Each gene identification approach has its own features and limitations;
- Genome annotation is an on-going process, and the accuracy is being improved along with the accumulation of the evidence data;tRNAsnoRNA

Case Study

_Ds06g02400	L0C_0s06g02420	L0C_0s06g02430	L0C_0s06g02440	
x domain containing protein, expressed LOC_0s06g02410 expressed protein	ATOZI1, putative, expressed	expressed protein	expressed protein	
Rice Gene Hodels socg02400.1 LOC_0s06e02410.1	LOC_0806g02420.1	L0C_0805g02430.1	L0C_0506g02440.1	
ank Annotations	<u> </u>			←⊩
esh Predictions	<+⊡			
HarkHMM Predictions	BB-BI			
nerHNN Predictions	<-□	<u>0-0-0-0-</u>		
tri-cumn	gi 32969371 dbj AK059353.1 gi 32976789 dbj AK066771.1	gi 32977990 dbj AK067972.1	gi 32971570 db j AK061552.1 gi 37991788 db j AK122142.1 gi 32984057 db j AK098848.1	
Kice iranscript Hssenblies TA25631_4530 CX100736	TA5524_4530 B1806488 AU223362	TA21232_4530 CF196602 BM038818	CF321424 BI798155 AU222970	
	B9928593 AU058448 CV729971		AU082453 TA11189_4530 BU673373	

Sorghum-Rice Synteny and EST Read Pair

Create a Gene Model

<	.9k 839k	839.1k 839.2k	839.3k	839.4k	839.5k	839.6k	839.7k	839.8k	839.9k	840k	840.1k	840.2k
Rice BAC Tiling Path												
AP001389 26827 157519												
TIGR Rice Loci												
									LOC_Os06g0	2440		
TTCP Rice Cope Medale									expressed	protein		
TTAK KICE DENE NOUEIS									LOC_Os06g0	2440.1		
ienBank Annotations												
Genesh Predictions												
GeneMarkHMM Predictions												
WINSCAN Predictions												
GlinnerHMM Predictions												
ssembled Sorghum bicolor sequences	: (xyplot)		400									
			LTOO									
			-70									-70
ssembled Zea mays sequences (xyplo	it)		40									40
		_	100									-100
			-70									-70
rabidopsis thaliana alignments (xy	plot)		-40									40
		ſ	100									100
			70									-70
			40									40
ice EST Read Pairs												
strand Pair: CI636560 CI406980												
strand Pair: CI634298 CI404700												
strand Pair: CI642939 CI414939												
strand Pair: CI623474 CI390303												
strand Pair: CI650679 CI424051												
strand Pair: CI645372 CI417970												
VM Predictions (New)												

Expression Data

Data Type	Data Source
EST/FL-cDNA	PASA/Manual curation
Peptide	Koller et al., PNAS, 2002 (6,296 peptides/2,528 fgenesh models)
MPSS	Blake Meyers (http://mpss.udel.edu/rice/)
SAGE	126,663 tags from MGOS (http://www.mgosdb.org/sage/)
Microarray	NSF Rice Oligonucleotide Array project
	(http://www.ricearrary.org)
Tiling array	Deng lab, Yale University

Expression Data in Gbrowse

← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	9.1k 839.2k 839.3k 83	39.4k 839.5k 839.6k 839.7	**************************************	840.1k 840.2k 840.3k 840.4k 840.5k
TIGR Rice Loci			LDC 0s06g02440	
			expressed protein	
TIGR Rice Gene Models			LDC 0s06s02440 1	
THINSCAN Predictions				
Protein Fuidence				
Tale Tilling Hrray Frotile (65669967 Forward				
Yale Tiling Array Profile (GSE6996) Reverse				
······				
			_ 	
MPSS Tags				
		G		
SAGE Tags				CATGTAAAAACCTTCAGAATT
				CATGAACCGGGCAATGTTG
				CATGTAAAATCGAATAT
NSF 20k Rice Oligo Microarray				
NSF 45k Rice Oligo Microarray				
Affymetrix GeneChip Rice Genome Array				
		°ee		
Yale Rice Oligo Microarray				—
Agilent Rice Oligo Microarray				
EVM Predictions (New)				

MPSS SEQUENCING TECHNOLOGY

I. Library construction

Brenner et al., PNAS 97:1665-70.

Each bead contains the amplified product derived from the 3' end of a single transcript.

uncover next 4 bases, repeat cycle

©98 Keep

Ovary and mature stigma

FME	(s)	0	0	744,319	0	1,482,167	1.000	0	2,226,486	0.0
FRO	(s)	0	0	702,046		1,200,706	1.000	0	1,902,752	0.0
FRR	(s)	0	0	690,560		1,017,481	1.000	0	1,708,041	0.0
MC00	(?)	0	0	473,119	0	639,651	1.000	0	1,112,770	0.0
MC24	(?)	0	0	616,970	0	550,712	1.000	0	1,167,682	0.0
MR03	(?)	0	0	549,558	0	617,519	1.000	0	1,167,077	0.0
MR06	(?)	0	0	383,788	0	450,596	1.000	0	834,384	0.0
MR12	(?)	0	0	411,516	0	583,952	1.000	0	995,468	0.0
MR24	(?)	0	0	399,688		663,844	1.000	0	1,063,532	0.0
MR48	(?)	0	0	544,207		592,538	1.000	0	1,136,745	0.0
MS03	Ø	0	0	583,551		706,204	1.000	0	1,289,755	0.0
MS06	- ČŚ	0	0	336,582	0	489,874	1.000	0	826,456	0.0
MS12	- ČŚ	0	0	360,120		452,446	1.000	0	812,566	0.0
M\$24	- ČŚ	0	0	366.078		446,143	1.000	0	812.221	0.0
MS48	- ČŚ	0	0	500,054	0	676,083	1.000	0	1.176.137	0.0
MS96	10 D	0	0	333,441	0	476.251	1.000	0	809.692	0.0
NCA	िं	0	0	665,983	0	857.387	1.000	0	1.523.370	0.0
NCL	(s)	0	0	726,299	0	993,805	1.000	0	1.720.104	0.0
NCR	6	ň	Ŭ.	819,719	0	1.005.156	1.000	0	1.824.875	0.0
NDI	6	ň	ů Ú	868,702	0	1.057.364	1.000	0	1,926,066	0.0
NDR	(0)	ň	0	636,111	0	944 735	1.000	0	1,580,846	0.0
NCD	(0)	ő	0	809.426	0	1.154.506	1.000	Ő	1,963,932	0.0
NCS	(0)	ő	0	552,552	0	718 782	1.000	Ő	1,271,334	0.0
NTD	6	ŏ	0	000,002	0	1 152 626	1.000	0	2 042 459	0.0
NI 4	0	0	0	000,020		0	1.000	0	2,042,407	0.0
NLA	60	0	0	222.521	0	442 190	1.000	0	774 721	0.0
NLD	6	<u> </u>	0	444 641		552 004	1.000	0	1.001.545	0.0
NLC	6	<u> </u>	0	522 002		405.054	1.000	0	950 044	0.0
NLD	6	<u> </u>	0	442 570		500.000	1.000	0	944 407	0.0
NME	6	0	0	054 500	- 0	1 122 027	1.000	0	2010/55	0.0
NOS	6	20	22	764 207	- 0	1,100,007	1,000	22	2,010,433	11.4
NDO	6	- 27	22	011 742	- 0	1,100,070	1.000	22	1,922,000	0.0
NPO		0	0	811,742		1,024,436	1.000	0	1,836,178	0.0
NRZ NDA	8	0	0	005.650		1.010.000	1.000	0	0	0.0
NRA		<u> </u>	0	905,659		1,019,990	1.000	0	1,923,649	0.0
NRB		<u> </u>	0	940,221		1,015,594	1.000	0	1,955,815	0.0
NSL		0	0	768,410		1,203,268	1.000	0	1,973,678	0.0
NSK	(5)	<u> </u>	0	598,714		582,877	1.000	0	1,281,391	0.0
NST NUT	(5)	<u> </u>	0	692,117		1.040.005	1.000	0	1,438,617	0.0
NTL	(5)	<u> </u>	0	525,418		1,048,895	1.000	0	1,675,313	0.0
NTR	(5)	0	0	737,011		593,122	1.000	0	1,330,133	0.0
PLA	(5)	0	0	424,016		503,578	1.000	0	927,594	0.0
PLU	(5)	0	0	429,898		550,824	1.000	0	980,722	0.0
PLW	(5)	0	0	363,097		436,803	1.000	0	799,900	0.0
PSC	(5)	0	0	454,566		591,489	1.000	0	1,046,055	0.0
<u>PS1</u>	5	0	0	435,252		556,580	1.000	0	991,832	0.0
PSL	(5)	0	0	368,498	0	516,690	1.000	0	885,188	0.0
PSN	(5)	0	0	366,140	0	603,782	1.000	0	969,922	0.0
PSY	(s)	0	0	411,871	0	558,414	1.000	0	970,285	0.0
XC00	(5)	0	0	448,936	0	453,985	1.000	0	902,921	0.0
XC 06	(5)	0	0	511,865	0	539,475	1.000	0	1,051,340	0.0
<u>XC24</u>	(5)	0	0	437,295	0	476,855	1.000	0	914,150	0.0
XR03	(s)	0	0	389,774	0	484,771	1.000	0	874,545	0.0
XR06	(s)	0	0	467,130	0	495,044	1.000	0	962,174	0.0

Refine Gene Structure

1818.7k 1818.8k 1818.9k 1819k 1	1819.1k 1819.2k	1819.3k 1819.	4k 1819.5k	1819.6k
TIGR Rice Loci				
hypothetical protein				
TIGR Rice Gene Models				
FGenesh Predictions		-		
Twinscan Predictions				
GeneMarkHMM Predictions		J		
GlimmerHMM Predictions		1		
Rice FL-cDNA				
TIGR Rice Transcript Assemblies				
Haize				
AZM5_97785 1458 2300			-	
Haize2				ſ
Sorghun				
Sorghun2				
Arabidopsis				
		2004 17/10/18 17/1154	4 ■	
Arabidopsis2		1		ſ
		1	-	
Plant TA ORF		J		
Hordeum_vulgare_ORF_30850				
Triticum_aestivum_ORF_43558		}		
Zea_mays_ukr_45072		J		
n Toroum_acsorvum_ukr_43335			Triticum	aestivum ORE 4355

"Have no fear of perfection you'll never reach it."

- Salvador Dalí