Bioinformatics Data Formats

TIGR Plant Genome Annotation Workshop May 2007

Biological Data and Bioinformatics

- The amount of biological data being generated and stored continues to increase.
- The data is composed of many different types: sequence (genome, ESTs), annotation of features, protein structural information, gene expression data, and alignment data.
- Another valuable resource for bioinformatics is web-based computational tools.

Popular Bioinformatics Resources

- NCBI- <u>http://www.ncbi.nlm.nih.gov/</u>
- EMBL- http://www.ebi.ac.uk/embl/
- PIR- <u>http://pir.georgetown.edu/</u>
- PDB- <u>http://www.pdb.org/</u>
- Google- <u>http://www.google.com/</u>

Early Data Formats

- These early databases stored sequence data in a file. The file held the sequence in ASCII (plain) text and had a descriptive filename.
- This method became limiting when researchers wanted to include annotations and information about the source of the sequence.
- Difficulty in searching for sequences was also an issue.

Flat File Storage Data Formats

- When GenBank, EMBL and DDBJ formed a collaboration (1986), sequence databases had moved to a defined flat file format with a shared feature table format and annotation standards.
- The PIR also adopted a similar format for protein sequences (http://www.molecularevolution.org/resources/fileformats/)
- The flat file formats from the sequence databases are still used to access and display sequence and annotation. They are also convenient for storage of local copies.

Header	ACCESSION M136 VERSION M136 KEYWORDS amyl SOURCE Homo ORGANISM Homo Euka Mamm Homi REFERENCE 1 () AUTHORS Liao TITLE Huma and J JOURNAL Scie PUBMED 3014 COMMENT Orig	n prion protein 27-30 mRNA, complete cds. 67 67.1 GI:190469 oid; prion protein; sialoglycoprotein. sapiens ryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; alia; Eutheria; Euarchontoglires; Primates; Catarrhini; nidae; Homo. bases 1 to 2420) ,Y.C., Lebo,R.V., Clawson,G.A. and Smuckler,E.A. n prion protein cDNA: molecular cloning, chromosomal mapping, biological implications nce 233 (4761), 364-367 (1986) 653 inal source text: Human, cDNA to mRNA, clones lambda [3,6,7]. ngle prion protein gene is found on chromosome 20 per haploid
	FEATURES source	Location/Qualifiers 12420
	gene mRNA	/organism="Homo sapiens" /mol_type="mRNA" /db_xref="taxon:9606" 12420 /gene="PRNP" <12420 /gene="PRNP"
Feature	CDS	/product="PrP mRNA" 77814
Table	_	/gene="PRNP" /note="prion protein" /codon_start=1 /protein_id="AAA19664.1" /db_xref="GI:190470" /translation="MLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYPP QGGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQGGGTHSQWNKPSKPKTNM KHMAGAAAGAVVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDE YSNQNNFVHDCVNITIKQHTVTTTKGENFTETDVHOMERVVEQMCITQYERESQAYY QRGSSMVLFSSPPVILLISFLIFLIVG"
		bp upstream of SmaI site; chromosome 20.
Sequence	61 gegeeg 121 caagaa 181 cageee 241 tggtgg 301 acagee 2161 tgaagt 2221 tttgeg 2281 gacace 2341 tgcatg	goca aggttogoca taatgactgo totoggtogt gaggagagga gaagotogog ogge tgetggatge tggttetett tgtggeeaea tggagtgaee tgggeetetg goge cogaagootg gaggatggaa caotggggge agcogataco oggggcaggg tgga ggeaacoget acceacetea gggeggggag ceccatggt gtggetgggg tcat ggtggtgget ggggteaagg aggtggeaee cacagteagt gggaacaagee gtet aatgoattaa ettttgtaag gtaetgaata ettaatatgt gggaaaceet tggt oottaggett acaatgtgea etgaatogt teatgtaaga atceaaagtg atta acaggtett gaaatatgea tgtaettat atttetata tttgtaaett ttet tgttttgtta tataaaaaa ttgtaaatgt ttaatatet actgaaatta cecaa gatgageaee

Header

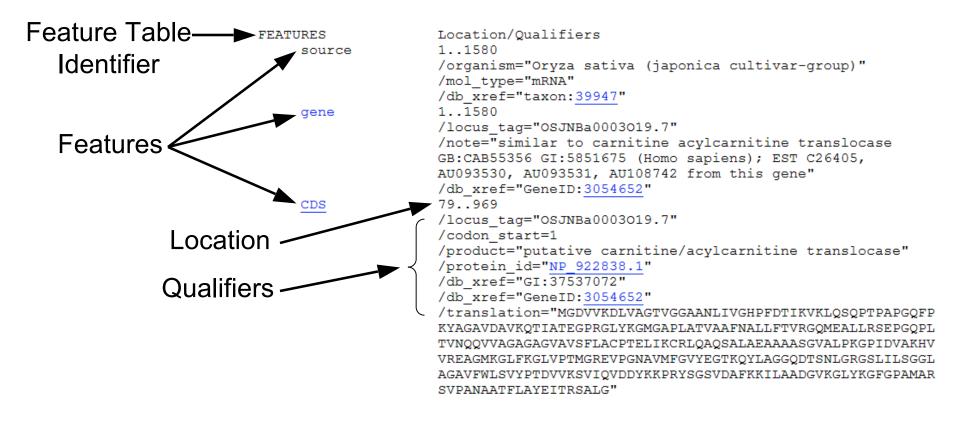
ID

X AC. ESPRPOA.

H13667;

XX SV XX H13667.1 DT DT 19-5EP-1987 (Rel. 13, Created) 04-MAR-2000 (Rel. 63, Last updated, Version 6) XX DE Human prion protein 27-30 mRSA, complete ods. XE KK XX amyloid; prion protein; sialoglycoprotein. 05 Somo sepiens (human) oc Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; oc Eutheria: Euarchontoglires: Frimates: Catarrhini: Hominidae: Homo. XE 838 [1] RP 1-2420 RX. PUBMED: 3014653. RA Liso Y.-C.J., Lebo R.V., Clavson G.A., Smuckler E.A.; BT "Human prion protein cDNA: molecular cloning, chromosomal mapping, and BT biological implications.": RL Science 233(4761):364-367(1986). XX CC XXX A single prion protein gene is found on chromosome 20 per haploid genone. Location/Qualifiers Ser source 1...2420 /db_mref="tamon:9606" /mol_type="mRNA" /organiam="Homo sapiens" -REA <1...2420 /note="PrP mRSGA" CDS 77..814 /codon_start=1 /db_kref="608:120720" /db_kref="60A:P04156" /db_mref="H000:9449" /db_mref="F00:1216" /db_wref="POB:1E17" /db_wref="POB:1E1F" /db_wref="POB:1E15" /db_wref="FD8:1E10" /db_wref="FD8:1E1W" Feature /db_wref="F08:1FHC" /db_wref="F08:1FO7" /db_wref="POB:1HOL" /db_xref="PD8:18JN" /db_xref="PD8:18JN" -----/db_xref="PCB:114M" /db_xref="POB:10EH" /db_kref="F08:10E1" /db_kref="F08:10E1" /db_kref="F08:10L2" /db_kref="F08:10L2" /db xref="PD8:1040" FT FT FT FT FT FT FT FT /db_xref="PO8:10H1" /db_xref="PD8:1042" /db_kref="PD8:1043" /db gref="UniFrotMB/Swiss-Prot:P04156" /note="prion protein" /gene="PRNP" /protein_id="AAA19664.1" /translation="MLVLFVATMSDLGLCHOGRM/PGGMM/TGGSR/PGgGSPGGMR/PPg GGGGWGOPHGGGWGOPHGGGWGOPHGGGWGOPHGGGWGOGGTHGOWHKPSKPRTIMRH NAGAAAGAVVOGLOOYHLOSANSRPIIHFOSDYEDRYYRENNHRYDNGVYYRDHDEYSD 77 77 QUERFVHDCVHITIKQHTVTTTTRGENFTETDVKKMERVVDQMCITQYERESQAYYQRGS SMVLFSSPPVILLISFLIFLIVO* XX 90 Sequence 2420 BP; 669 A; 500 C; 583 8; 668 T; 0 other; cgagcagees aggitegees tastgactge teteggiegt gaggagages gaagetegeg 60 gogcogoggo tgotggatgo tggttotott tgtggocaca tggagtgaco tgggoototg 120 180 casdaagoot copascets pagetopas cactogoget agcopatace copporagog 240 cagocotoga gocaacopot accoacotoa gopogotogt gootgopogo agootcatog 2220 tgaagtgtot astgoattas cittigiaag giactgaata citaatatgi gygaaacoot tttgogtggt cottaggott acaatgtgca ctgaatcgtt tcatgtaaga atocaaagtg 2280 gacaccatta acaggicitti gaaatatgoa tgiactitat attitotata titgiaacti 2340 tgcatgttct tgttttgtta tatasassa ttgtsastgt ttastatctg actgasatta 2400 anogagocan gatgagoaco 2420 11

standard: sRNA: HUM: 2420 BP.


Table

Sequence

GenBank Format Example: Header Section

```
NM 197856
                                   1580 bp
                                                      linear PLN 09-NOV-2004
LOCUS
                                              mRNA
DEFINITION Oryza sativa (japonica cultivar-group) putative
           carnitine/acylcarnitine translocase (OSJNBa0003019.7), mRNA.
           NM 197856
ACCESSION
           NM 197856.1 GI:37537071
VERSION
KEYWORDS
SOURCE
           Oryza sativa (japonica cultivar-group)
 ORGANISM Oryza sativa (japonica cultivar-group)
            Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;
            Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae;
           Ehrhartoideae; Oryzeae; Oryza.
REFERENCE
           1 (bases 1 to 1580)
  AUTHORS
  CONSRTM
           The Rice Chromosome 10 Sequencing Consortium
            In-depth view of structure, activity, and evolution of rice
  TITLE
            chromosome 10
          Science 300 (5625), 1566-1569 (2003)
  JOURNAL
  PUBMED
          12791992
REFERENCE
          2 (bases 1 to 1580)
           Buell, C.R., Wing, R.A., McCombie, W.R., Messing, J. and Yuan, Q.
  AUTHORS
           Direct Submission
  TITLE
           Submitted (05-MAY-2003) The Institute for Genomic Research, 9712
  JOURNAL
           Medical Center Dr, Rockville, MD 20850, USA
            PROVISIONAL REFSEQ: This record has not yet been subject to final
COMMENT
            NCBI review. This record is derived from an annotated genomic
            sequence (NT 080068).
            COMPLETENESS: not full length.
```

GenBank Format Example: Feature Table Section

The EMBL feature table is the same with an identifier of FT on each line.

GenBank/EMBL/DDBJ Feature Table: Feature Definitions

http://www.ncbi.nlm.nih.gov/collab/FT/

Definition for mRNA feature:

Feature Key	mRNA
Definition	<pre>messenger RNA; includes 5'untranslated region (5'UTR), coding sequences (CDS, exon) and 3'untranslated region (3'UTR);</pre>
Optional qualifiers	<pre>/allele="text" /citation=[number] /db_xref="<database>:<identifier>" /evidence=<evidence_value> /function="text" /gene="text" /label=feature_label /locus_tag="text" (single token) /map="text" /note="text" /old_locus_tag="text" (single token) /operon="text" /product="text" /pseudo /standard_name="text" /usedin=accnum:feature_label</evidence_value></identifier></database></pre>

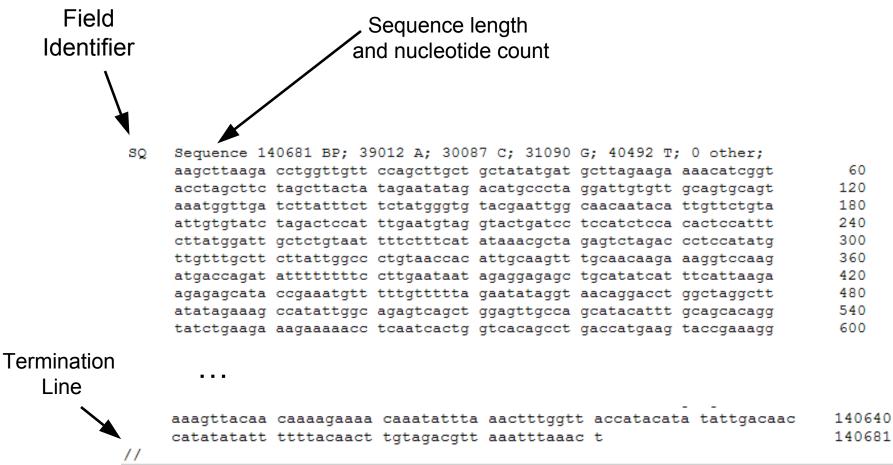
Some features have mandatory qualifiers.

Genbank/EMBL/DDBJ Feature Table: Feature Location

http://www.ncbi.nlm.nih.gov/collab/FT/

- Feature located at a single base in the sequence:
 - misc_feature 176564
- Feature located between two bases:
 - misc_feature 54365^54366
- Feature located in a continuous range:
 - exon 1294..5763
- 'Fuzzy' location of a feature:
 - promoter (1500.1505)..1700
- Feature on complementary strand:
 - mRNA complement(54..3765)
- Feature composed of several segments of sequence:
 - CDS join(10453..12948,13754..15932)
- Combinations of the above are possible.

GenBank Format Example: Sequence Section


Sequence Field ORIGIN Identifier cccatcgaga agcagacgcc accaccgcga ttcgaatcgc cgccgtctca aactcaaaac 61 tcacagatcg atcagatcat gggggacgtg gtcaaggacc tggtggcggg caccgtcggg 121 ggagcggcca acctcatcgt cggccacccc ttcgacacca tcaaggtcaa gctccagagc 181 cageceacec etgeceeegg ceaatteeee aagtaegeeg gegeegtega egeegteaag 241 cagaccatcg ccaccgaggg ccccaggggc ctctacaagg ggatgggtgc gccgctcgcc 301 accgtcgccg ccttcaacgc cctcctcttc accgtcaggg gccagatgga ggccctgctg 361 cgctccgagc ccggccagcc tctcacggtc aaccagcagg tcgtcgccgg tgcgggtgct 421 ggtgttgccg tctccttcct cgcttgccca actgagctca tcaagtgcag gttgcaggcc 481 cagagtgett tagecgagge agetgetget tetggegtag cectaceeaa aggaceaatt 541 gatgtggcaa agcacgtcgt cagggaagcc ggcatgaagg gtttgttcaa gggccttgtc 601 cctacaatqq qccqcqaqqt tcctggcaat gccgtgatgt ttggtgtgta tgaaggcacc 661 aagcagtacc tcgccggtgg tcaggacaca tcaaacctcg gcaggggctc tctcatccta 721 tecggaggee ttgetgggge ggtgttetgg eteteggttt accetacega egtegtgaag 781 agcgtgattc aggtggatga ctacaagaag ccaaggtact cagggtcagt cgacgctttc 841 aagaagattc tcgcggccga tggagtgaag ggcttgtaca aggggtttgg acctgccatg 901 gctcgtagtg tcccggccaa tgctgcgaca ttcctggcgt atgagattac aagatcggct 961 ctaggctgat tgattgctgg ttccaatggc catttctatc tcttatcatg gttgaaacaa 1021 caaccagget gtgcagttga gggggggaaa aagcagcagt agcagttcca atcctgtttt 1081 gcaagtttat ttcatctgca acattgtgat tcaaaacatt gaagtatgga agatgcaaca 1141 gcgagcaaga tcgctggctc tgcatttttt gtctgcctgt atgtataata atataagcct 1201 aacatgtgtg gggtgtggggt gtggagtgag tgtagctgaa agaaactcgt cgtcttgtcg 1261 gaatggttgg cctggagtgg attggccatc tgacggcgat cccatggtga ggggagtgag 1321 tgatgctgtc tgtgatggcg attgggggtg cgtttggtga gtgagtgagt gagtggccct 1381 ggtgttgctt gccctcttgg catccgaatc acctctcctc ttcttcttgg tctgaatttt 1441 tttgattccc tctcaactag catcttttta attggctgct attgccacag cccttgtatt 1501 ttagtactga gacctggggc tctagttgtt ttgagccagt tgagctgctg cagctttggg 1561 tgaggtggag gtaggaggcg Termination Line

EMBL Format Example: Sequence Info

		RN	[4]
		RP	1-140681
ID	AC078894 standard; genomic DNA; PLN; 140681 BP.	RA	Buell R.;
XX		RT	;
AC	AC078894;	RL	Submitted (25-APR-2002) to the EMBL/GenBank/DDBJ databases.
XX		RL	The Institute for Genomic Research, 9712 Medical Center Dr. Rockville, MD
sv	AC078894.11	RL	20850, USA, rbuell@tigr.org
XX		XX	
DT	09-AUG-2000 (Rel. 64, Created)	RN	[5]
DT	14-APR-2005 (Rel. 83, Last updated, Version 13)	RP	1-140681
XX		RA	Buell R.;
DE	Oryza sativa chromosome 10 BAC OSJNBa0096G08 genomic sequence, complete	RT	;
DE	sequence.	RL	Submitted (18-DEC-2002) to the EMBL/GenBank/DDBJ databases.
XX		RL	The Institute for Genomic Research, 9712 Medical Center Dr. Rockville, MD
KW	HTG.	RL	20850, USA
XX		XX	
os	Oryza sativa (japonica cultivar-group)	RN	[6]
oc	Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta;	RP	1-140681
oc	Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; Ehrhartoideae;	RA	Buell R.;
oc	Oryzeae; Oryza.	RT	
xx		RL	, Submitted (20-DEC-2002) to the EMBL/GenBank/DDBJ databases.
RN	[1]	RL	The Institute for Genomic Research, 9712 Medical Center Dr, Rockville, MD
RP	1-140681	RL	20850, USA, rbuell@tigr.org
RA	Buell C.R., Yuan Q., Ouyang S., Liu J., Gansberger K., Kim M.M.,	XX	Looo, our, induitory
RA	Overton II L.L., Bera J.J., Tsitrin T., Krol M.I., Jarrahi B.B., Jin S.S.,	cc	On Dec 20, 2002 this sequence version replaced gi:27228824.
RA	Koo H., Zismann V., Hsiao J., Blunt S., Vanaken S.S., Utterback T.T.,	cc	Address all correspondence to:rice@tigr.org
RA	Feldblyum T.V., Yang Q.Q., Haas B.J., Suh B.B., Peterson J.J.,	cc	BAC clone OSJNBa0096G08 is from Oryza sativa chromosome 10
RA	Quackenbush J., White O., Salzberg S.L., Fraser C.M.;	cc	The orientation of the sequence is from SP6 to T7 end of the BAC
RT	"Oryza sativa chromosome 10 BAC OSJNBa0096G08 genomic sequence";	cc	clone.
RL	Unpublished.	cc	Genes were identified by a combination of several methods: Gene
xx		cc	prediction programs including Fgenesh (http://www.softberry.com/),
RN	[2]	cc	genscan and Genscan+ (Chris Burge,
RP	1-140681	cc	http://CCR-081.mit.edu/GENSCAN.html), GeneMarkHMM (Mark Borodovsky,
RA	Buell R.;	cc	http://genemark.biology.gatech.edu/GeneMark/), and GeneSplicer
RT	;	CC	(Mihaela Pertea and Steven Salzberg, contact mpertea@tigr.org),
RL	, Submitted (08-AUG-2000) to the EMBL/GenBank/DDBJ databases.	cc	searches of the complete sequence against a peptide database and
RL	The Institute for Genomic Research, 9712 Medical Center Dr. Rockville, MD	cc	the plant EST database at TIGR (http://www.tigr.org/tdb/tgi.shtml).
RL	20850, USA	cc	Annotated genes are named to indicate the level of evidence for
XX	20830, 054	cc	their annotation. Genes with similarity to other proteins are named
RN	[3]	cc	after the database hits. Genes without significant peptide
RP	1-140681	cc	similarity but with EST similarity are named as unknown proteins.
	Buell R.;	cc	Genes without protein or EST similarity, that are predicted by more
RA RT		cc	than two gene prediction programs over most of their length are
	; Submitted (15-NOV-2001) to the EMBL/GenBank/DDBJ databases.	cc	annotated as hypothetical proteins. Genes encoding tRNAs are
RL RL	The Institute for Genomic Research, 9712 Medical Center Dr, Rockville, MD	cc	predicted by tRNAscan-SE (Sean Eddy,
RL	20850, USA	cc	http://genome.wustl.edu/eddy/tRNAscan-SE/). Simple repeats are
КШ	20000, 004	cc	identified by repeatmasker (Arian Smit,

CC http://ftp.genome.washington.edu/RM/RepeatMasker.html).

EMBL Format Example: Sequence

SWISSPROT/TrEMBL Format

• Very similar to EMBL format. Feature table is extended to capture structural features and biochemical information about the protein.

FT	SIGNAL	1 1	8 By similarity.
FT	CHAIN	19 24	7 Chloroplast ATP synthase a chain.
FT	TRANSMEM	39 5	8 Potential.
FT	TRANSMEM	97 11	5 Potential.
FT	TRANSMEM	134 15	3 Potential.
FT	TRANSMEM	221 24	0 Potential.
SQ	SEQUENCE	247 AA; 2	7291 MW; 540649B34778E585 CRC64;
	MNIIPCSIKT	LKGLYDISGV	EVGQHFYWQI GGFQIHAQVL ITSWVVITIL LGSVIIAVRN
	PQTIPTDGQN	FFEYVLEFIR	DLSKTQIGEE YGPWVPFIGT MFLFIFVSNW SGALLPWKII
	QLPHGELAAP	TNDINTTVAL	ALLTSAAYFY AGLSNKGLSY FEKYIKPTPI LLPINILEDF
	TKPLSLSFRL	FGNILADELV	VVVLVSLVPL VVPIPVMFLG LFTSGIQALI FATLAAAYIG
	ESMEGHH		

11

Formats for Sequence Analysis

- The database flat file formats are unwieldy for sequence analysis.
 - Sometimes you need just the sequence for analysis
 - Other times you need to work with the annotations in the database or generated by sequence analysis programs
 - Rarely do you need all of the metadata
- Many formats have been created over the years for this purpose
- FASTA format is the most common sequence format.

FASTA Format

A sample FASTA sequence record from a sequence DB:

Definition Line

Width of sequence rows usually 60,70,72 or 80 cols.

Note: The MultiFASTA Format is composed of FASTA records concatenated together.

FASTA Format: Definition Line

The minimum standard for a FASTA definition line is a '>' immediately followed by a sequence identifier. White space followed by a comment may optionally be added.

Example: >TA347833

The sequence databases follow a convention for composition of a sequence identifier for a FASTA formatted record.

FASTA Format: Sequence Identifiers

- GenBank/EMBL/DDBJ
 - gi|gi_number|gb|accession.version|locus
 - gi|gi_number|embl|accession.version|locus
 - gi|gi_number|dbj|accession.version|locus
- NCBI Reference Sequence
 - ref|accession|locus
- PIR
 - pir|entry
- SWISSPROT
 - sp|accession|locus
- PDB
 - pdb|entry|chain
- This list is not comprehensive, there are others out there.

Multiple Sequence Alignment(MSA) Formats

- MSA formats are needed to analyze and store the results of multiple sequence alignment from a programs such as ClustalW or MUSCLE.
- The MSA formats need to preserve information about the alignment such as gaps and substitutions.

Aligned FASTA Format

Gaps in the alignments are represented by dashes (-).

>PCXB PSEPU P00437 Protocatechuate 3,4-dioxygenase beta chain (EC 1.13.11.3) (3,4-PCD). PAQDNSRFVIR------DRNW--HPKALTPD------YKTSIA RSPRQALVSIP----QSISETTGPNFSHLGFGAH------DHDLL LNFNNGGLPIGERIIVAGRVVDQYGKPVPNTLVEMWQANAGGRYRHKNDRYLAPLDPNFG GVGRCLTDSDGYYSFRTIKPGPYPWRNGPNDWRPAHIHFGISGPSIATKLITQLYFEGDP L----IPMCPIVKSIANPEAVQ-QLIAKLDMNNANPMD-----CLA YRFD----IVLRGQRKTHFENC----->Q9ZFA1 Q9ZFA1 Protocatechuate 3,4-dioxygenase beta subunit (EC 1.13.11.3). MTLTQHDIDLEIAAEHATYEKRVADGAPVEH--HPRRDYAP------YRSSTL RHPKQPPVTIDVSKDPELVELASPAFGERDITEI-----DNDLT RQ--HNGEPIGERITVSGRLLDRDGRPIRGQLVEIWQANSAGRYAHQREQHDAPLDPNFT GVGRTLTDDEGGYHFTTVQPGPYPWRNHVNAWRPAHIHFSMFGSAFTQRLVTQMYFPSDP L----FPYDPIIQS-VTDDAARQRLVATYDHSLSVPEF-----SMG YHWD----IVLDGPHATWIEEGR----->PCXB BURCE P15110 Protocatechuate 3,4-dioxygenase beta chain (EC 1.13.11.3) (3,4-PCD). ---MDSPTILT-----PRDWPSHPAYVHPD-----YRSSVK RGPTRPMIPLK----ERLRDQYAPVYGAEDLGPL-----DHDLT KNAVKNGEPLGERIVVTGRVLDEGGKPVRNTLVEVWQANAAGRYVHKVDQHDAPLDPNFL GAGRCMTDAEGRYRFLTIKPGAYPWGNHPNAWRPNHIHFSLFGDYFGSRLVTQMYFPGDP L----LAYDPIFQ--GTPEAARDRLISRFSLDTTEEGH-----ALG YEFD----IVLRGRDATPMER------

ClustalW Format

A common MSA format is the alignments from the ClustalW program. Most phylogenetic programs can take ClustalW alignments as input.

CLUSTAL W (1.74) multiple sequence alignment

ATP7B_MOUSE	MDPRKNLASVGTMPEQERQVTAKE-ASRKILSKLALPGRPWEQSMKQSFAFDNVGYEGGL 59
ATP7B RAT	MPEQERKVTAKE-ASRKILSKLALPTRPWGQSMKQSFAFDNVGYEGGL 47
ATP7B HUMAN	MPEQERQITAREGASRKILSKLSLPTRAWEPAMKKSFAFDNVGYEGGL 48
ATP7B OVIS ARIES	AMKQSFAFDNNGYEDDL 43
	** ** : :* *** *** * :** **** *
ATP7B_MOUSE	DSTSSSPAATD-VVNILGMTCHSCVKSIEDRISSLKGIVNIKVSLEQGKHTVRYVPSVMN 118
ATP7B_RAT	DSTCFILQLTTGVVSILGMTCHSCVKSIEDRISSLKGIVSIKVSLEQGSATVKYVPSVLN 107
ATP7B HUMAN	DGLGPSSQVATSTVRILGMTCQSCVKSIEDRISNLKGIISMKVSLEQDSATVKYVPSVVC 108
ATP7B_OVIS_ARIES	DGVCPS-QTAAGTISIVGMTCQSCVKSIEGRVSSLKGIVSIKVSLEQSSAEVRYVPSVVS 102
	*. : *:****:********:::******. *:*****:
ATP7B MOUSE	LQQICLQIEDMGFEASAAEGKAASWPSRSSPAQEAVVKLRVEGMTCQSCVSSIEGKIRKL 178
ATP7B RAT	LQQICLQIEDMGFEASAAEGKAASWPSRSSPAQEAVVKLRVEGMTCQSCVSSIEGKIRKL 167
ATP7B HUMAN	LQQVCHQIGDMGFEASIAEGKAASWPSRSLPAQEAVVKLRVEGMTCQSCVSSIEGKVRKL 168
_	~~ ~ ~ ~ ~
ATP7B_OVIS_ARIES	LMQICHQIEDMGFQASVAEGKATSWASRVSPTSEAVVKLRVEGMTCQSCVSSIEGKIGKL 162
	* *:* ** ****:** *****:**.** *:.********

Downloading from NCBI

http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi

- "Entrez" is NCBI's downloading service.
- Convenient to download one or 1000 sequences.
- Accepts complex search queries.
- Accepts lists of accession numbers.
- Allows downloading of numerous formats.

Searching at Entrez

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helpentrez.chapter.EntrezHelp http://www.ncbi.nlm.nih.gov/entrez/query/static/help/helpdoc.html

- Boolean terms: AND, OR, NOT.
- Limit search of specific terms to specific fields: [orgn], [accession], [author], [gene], [keyword], [journal], [slen]
- Via the web interface, limits can be imposed. (Find sequences published since January 1997.)

GFF2 Format for Annotation

http://www.sanger.ac.uk/Software/formats/GFF/

GFF = General Feature Format

Tab delimited, easy to work with.

Many annotation viewers accept this format in various 'dialects'.

Columns:

- 1. Reference Sequence: base seq to which the coordinated are anchored
- 2. Source: source of the annotation
- 3. Type: Type of feature
- 4. Start
- 5. End (Start is always less than End)
- 6. Score: Used for holding numerical scores (similarity, etc)
- 7. Strand: "+',"-", or '." if unstranded
- 8. Phase: Signifies codon phase for CDS features
- 9. Group: Group feature belongs to. Also attributes such as name and alias

Chr1	TIGR_annot_DB	gene	9523	12619		+		Gene LOC_Os01g01030; Note "Multicopper oxidase, putative"; Alias "11667.t00003"
Chr1	TIGR_annot_DB	mRNA	9523	12619		+		mRNA LOC_Os01g01030.1; Gene LOC_Os01g01030; Note "11667.m000004".
Chr1	TIGR_annot_DB	five_p	rime_UTR	9523	9575		+	. mrna loc_os01g01030.1.
Chr1	TIGR_annot_DB	CDS	9576	10615		+	0	mRNA LOC_Os01g01030.1.
Chr1	TIGR_annot_DB	CDS	10708	11073		+	2	mRNA LOC_Os01g01030.1.
Chr1	TIGR_annot_DB	CDS	11161	11239		+	2	mRNA LOC_Os01g01030.1.
Chr1	TIGR_annot_DB	CDS	11771	11973		+	0	mRNA LOC_Os01g01030.1.
Chr1	TIGR_annot_DB	CDS	12068	12161		+	2	mRNA LOC_Os01g01030.1.
Chr1	TIGR_annot_DB	three_	prime_UTR	12162	12619		+	. mRNA LOC_0s01g01030.1.

GFF3 Format

http://song.sourceforge.net/gff3.shtml

Extension of GFF by the Sequence Ontology (SO) and GMOD Projects

A much needed extension to GFF/GFF2: Allows hierarchies more than one level deep Separated Group membership and feature name/ID Attributes take the form of "Key=Value" pairs Feature can belong to more than one group

11667	PASA2	gene	13123	16979	+		ID=11667.t00004;Name="[pasa:asmbl_8,status:4]".
11667	PASA2	mRNA	13123	13778	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	CDS	13401	13778	+	0	Parent=11667.m00005,update,status:[pasa:asmbl_8,status:4].
11667	PASA2	mRNA	14185	14276	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	CDS	14185	14276	+	0	Parent=11667.m00005,update,status:[pasa:asmbl_8,status:4].
11667	PASA2	mRNA	14360	15060	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	CDS	14360	15060	+	2	Parent=11667.m00005,update,status:[pasa:asmbl_8,status:4].
11667	PASA2	mRNA	15303	15373	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	CDS	15303	15373	+	1	Parent=11667.m00005,update,status:[pasa:asmbl_8,status:4].
11667	PASA2	mRNA	15770	15859	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	CDS	15770	15859	+	0	Parent=11667.m00005,update,status:[pasa:asmbl_8,status:4].
11667	PASA2	mRNA	15944	16123	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	CDS	15944	16123	+	0	Parent=11667.m00005,update,status:[pasa:asmbl_8,status:4].
11667	PASA2	mRNA	16333	16431	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	CDS	16333	16395	+	0	Parent=11667.m00005,update,status:[pasa:asmbl_8,status:4].
11667	PASA2	mRNA	16536	16979	+		ID=11667.m00005,update,status:[pasa:asmbl_8,status:4];Parent=11667.t00004.
11667	PASA2	gene	19643	23696	+		ID=11667.t00005;Name="[pasa:asmbl_14,status:8]".

A Few Final Words About Text Editors, Excel, Windows and Unix

- True text editors must be used when working with sequence records. Word processors such as MS word introduce formatting and control characters.
- Excel files must be saved in Tab Delimited format to be truly portable.
- Unix and MS Windows (and DOS) use different characters to indicate a new line in a text file. If you open a sequence file in notepad and see the text in a long string with boxes where the line breaks should be, the file uses Unix line ending.
- Using a text editor such as Emacs or JEdit will allow you to open the file properly in Windows, otherwise utilities exist for convert between Unix and DOS line endings (dos2unix, unix2dos).